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Abstract
We formulate this problem under an infinitely long wavelength approximation,
a negligible Reynolds number and a small magnetic Reynolds number. We
decide on a perturbation method of solution. The viscosity parameter α � 1
is chosen as a perturbation parameter. The governing equations are developed
up to first-order in the viscosity parameter (α). The zero-order system yields
the classical Poiseuille flow when the Hartmann number M tends to zero.
For the first-order system, we simplify a complicated group of products of
Bessel functions by approximating the polynomial. The results show that the
increasing magnetic field increases the pressure rise. In addition, the pressure
rise increases as the viscosity parameter decreases at zero flow rate. Moreover,
it is independent of the Hartmann number and viscosity parameter at certain
values of flow rate. We make comparisons with other studies.

PACS number: 52.30.Cv

1. Introduction

The application of magnets to the human body is called magnetotherapy, by which diseases
are treated. No drugs are administered under this therapy. Magnets in the form of lodestones
were known in ancient times and their properties were considered to be magical. They were,
however, never considered as instruments of healing until the beginning of the sixteenth
century when a Swiss alchemist and physician P A Paracelsus studied magnets and stated
that they could heal inflammations, ulceration, and many diseases of the bowel (intestine) and
uterus, and that they could also be useful both in internal as well as external ailments. It was
his contention that any diseased part of the body, when exposed to a magnetic force, would
be cured more effectively and more speedily than with a drug. Furthermore, Li et al (1994)
have used an impulse magnetic field in the combined therapy of patients with stone fragments
in the upper urinary tract. It was found that the impulse magnetic field (IMF) activates the
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impulse activity of the ureteral smooth muscles in 100% of cases. Furthermore, there is
a non-invasive radiologic test that uses a magnetic field (not radiation) to evaluate organs
in the abdomen prior to surgery in the small intestine (but not always). Moreover, in the
ureter, the cells tend to be flattened towards the base and more rounded towards the epithelial
surface. The attachments between cells are such that urine cannot pass between them. Also,
although the epithelium is termed a ‘mucosa’ there are no mucus secreting cells or glands.
We deduce that there is no absorption by the ureter wall, nor variable viscosity of the fluid
passing in the ureter. In addition, Lykoudis and Roos (1970) considered that the viscosity in
the ureter is constant. Inversely, all mucosal membranes produce mucus, in various parts of
the gastrointestinal system (GI). So it is suitable to consider the small intestine application
with hypothesis, magnetic field and fluid with variable viscosity. Due to the complexity of
the non-linear equations of motion, we only consider the cases of an axisymmetric flow, an
infinite wave train on the tube, an incompressible Newtonian fluid with variable viscosity and
a constant transverse magnetic field. Expressions for the pressure rise per unit wavelength and
friction force on the wall of tube (small intestine) have been computed numerically.

Many authors have studied the analysis of the mechanisms for peristaltic transport.
Latham (1966) was probably the first to investigate the mechanism of peristalsis in relation
to mechanical pumping. Lew et al (1971) suggested chyme as a non-Newtonian material
having plastic-like properties. Shukla et al (1980) have investigated the effects of peripheral-
layer viscosity on peristaltic transport of a bio-fluid in a uniform tube and have used the long
wavelength approximation as in Shapiro et al (1969). Yin and Fung (1969) have investigated
peristaltic waves in circular cylindrical tubes using a perturbation method. Bohme and
Friedrich (1983) have investigated the peristaltic flow of viscoelastic liquids and have assumed
that the relevant Reynolds number is small enough to neglect inertia forces, and that the ratio
of the wavelength and the channel height is large, which implies that the pressure rise is
constant over the cross section. Srivastava et al (1983) studied peristaltic transport of a fluid
with variable viscosity through a non-uniform tube. Agrawal and Anwaruddin (1984) studied
the effects of a magnetic field on blood flow by taking a simple mathematical model for blood
through an equally branched channel with flexible outer walls executing peristaltic waves.
Srivastava and Srivastava (1985) have investigated the effects of power-law fluid in uniform
and non-uniform tubes under zero Reynolds number and long wavelength approximations.
Pozrikidis (1987) has investigated a study of peristaltic flow under the assumption of creeping
motion and has used the boundary integral method for Stokes flow. Siddiqui and Schwarz
(1994) have investigated the peristaltic flow of a second-order fluid in a tube and have used
a perturbation method to second order in dimensionless wavenumber. El Misery et al (1996)
have investigated the peristaltic transport of Carreau fluid through a uniform channel, under
zero Reynolds number and long wavelength approximations. El Shehawey et al (1998)
have investigated the peristaltic transport of Carreau fluid through a non-uniform channel,
under zero Reynolds number and long wavelength approximations. Abd El Hakeem and
El-Misiery (2002) have investigated the peristaltic pumping of Carreau fluid in the presence
of an endoscope. El-Misiery et al (2003) have studied the effects of an endoscope and fluid
with variable viscosity on peristaltic motion.

With the above studies in mind, we propose to study the effects of a magnetic field and
fluid with variable viscosity on peristaltic motion in a uniform tube.

2. Formulation and analysis

We consider the creeping flow of an incompressible Newtonian fluid with variable viscosity
through an axisymmetric form in a uniform tube thickness with a sinusoidal wave travelling
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Figure 1. Peristaltic motion of fluid with variable viscosity subjected to a constant transverse
magnetic.

down its wall. We assume that the fluid is subjected to a constant transverse magnetic field.
The induced magnetic field is negligible, which is justified for flow at small magnetic Reynolds
number. The external electric field is zero and the electric field due to polarization of charges
is also negligible. Heat due to viscous and Joule dissipation is neglected. Also, we can neglect
the gravity effect since the gravity transverse to the flow in the small intestine and it does not
interact with fluid particles. The geometry of the wall surface is described in figure 1.

h̄ = a + b sin
2π

λ
(Z̄ − ct̄) (2.1)

where a is the radius of the tube at inlet, b is the wave amplitude, λ is the wavelength, c is the
wave speed and t̄ is the time. We choose the cylindrical coordinate system (R̄, Z̄), where the
Z̄-axis lies along the centreline of the tube, and R̄ transverse to it. In fixed coordinates (R̄, Z̄),
the flow in the stationary coordinates is unsteady but if we choose moving coordinates (r̄, z̄),
which travel in the Z̄-direction with the same speed as the wave, then the flow can be treated
as steady. The coordinate frames are related through

z̄ = Z̄ − ct̄ r̄ = R̄ (2.2)

w̄ = W̄ − c ū = Ū (2.3)

where Ū , W̄and ū, w̄ are the velocity components in the radial and axial directions in the fixed
and moving coordinates respectively.

The equations of motion and boundary conditions in the moving coordinates are the
continuity equation

1

r̄

∂(r̄ū)

∂r̄
+

∂w̄

∂z̄
= 0 (2.4)

and the Navier–Stokes equations

∂P̄

∂r̄
= ∂

∂z

[
µ̄(r)

(
∂ū

∂z̄
− ∂w̄

∂r̄

)]
(2.5)

∂P̄

∂z̄
= −1

r̄

∂

∂r̄

[
µ̄(r)r̄

(
∂ū

∂z̄
− ∂w̄

∂r̄

)]
− σµ2

eH
2
0 w̄ (2.6)

with the boundary conditions

∂w̄

∂r̄
= 0 ū = 0 at r̄ = 0 (2.7a)

w̄ = −c ū = −c
dh̄

dz̄
at r̄ = h̄ = a + b sin

2π

λ
z̄ (2.7b)
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where P̄ is the pressure, µ̄(r) is the viscosity function, σ is the electrical conductivity and µe

is the magnetic permeability.
It is convenient to non-dimensionalize the variables appearing in equations (2.1)–(2.7)

introducing the wavenumber (δ) and the Hartmann number (M) as follows

R = R̄

a
r = r̄

a
Z = Z̄

λ
z = z̄

λ
W = W̄

c
w = w̄

c

U = λŪ

ac
ū = λū

ac
P = a2P̄

cλµ0
µ = µ̄(r)

µ0
t = ct̄

λ
δ = a

λ

M = µeH0a

√
σ

µ0
h = h̄

a
= 1 + φ sin(2πz) (2.8)

where φ is the amplitude ratio (φ = b/a).
The equations of motion and boundary conditions become

1

r

∂(ru)

∂r
+

∂w

∂z
= 0 (2.9)

∂P

∂r
= δ2µ(r)

∂

∂z

(
δ2 ∂u

∂z
− ∂w

∂r

)
(2.10)

∂P

∂z
= 1

r̄

∂

∂r̄

[
µ(r)r

(
∂w

∂r
− δ2 ∂u

∂z

)]
− M2w (2.11)

with the dimensionless boundary conditions
∂w

∂r
= 0 u = 0 at r = 0 (2.12a)

w = −1 u = −dh

dz
at r = h = 1 + φ sin 2πz. (2.12b)

Using the long wavelength approximation (δ = 0) then equations (2.10) and (2.11) reduce to
∂P

∂r
= 0 (2.13)

∂P

∂z
= 1

r

∂

∂r

(
rµ(r)

∂w

∂r

)
− M2w. (2.14)

The effect of viscosity variation on peristaltic flow can be investigated for any given function
µ(r). For the present investigation, we assume the viscosity variation in the dimensionless
form as

µ(r) = e−αr or µ(r) = 1 − αr for α � 1 (2.15)

where α is the viscosity parameter.
This assumption is reasonable for the following physiological reasons, since a normal

person or animal of similar size consumes one to two litres of fluid every day. On top of that,
another six to seven litres of fluid are received by the small intestine daily as secretions from
salivary glands, stomach, pancreas, liver and the small intestine itself. Also, the viscosity of
the gastric mucus (near the wall) varies between 1–10−2 cP but the viscosity of the chyme
varies between 10−3–10−6 cP, as reported in Shukla et al (1980). Moreover, viscosity depends
on concentration through µ = eλC , where λ � 1 and C is the concentration. Thus, we can
deduce that the concentration depends on radial distance. Hence, the viscosity of the fluid
adjacent to the wall of the small intestine is less than that away from the wall. Therefore, the
above choice of µ(r) = e−αr is justified.
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3. Rate of volume flow

The instantaneous volume flow rate in the fixed coordinate system is given by

Q̂ = 2π

∫ h̄

0
R̄W̄ dR̄ (3.1)

where h̄ is a function of Z̄ and t̄ . Substituting from equations (2.2) and (2.3) into equation (3.1),
and then integrating yields

Q̂ = q̄ + πch̄ (3.2)

where

q̄ = 2π

∫ h̄

0
r̄w̄ dr̄ (3.3)

is the volume flow rate in the moving coordinates system and is independent of time. Here,
h̄ is a function of z̄ alone and is defined through equation (2.8). Using the dimensionless
variables, we find

F = q̄

2πa2c
=

∫ h

0
rw dr. (3.4)

The time-mean flow over a period T = λ
c

at a fixed Z-position is defined as

Q̄ = 1

T

∫ T

0
Q̂ dt̄ . (3.5)

Substituting from equation (3.2) into equation (3.5) and integrating, we obtain

Q̄ = q̄ + πc

(
a2 +

b2

2

)
which may be written as

Q̄

2πca2
= q̄

2πca2
+

1

2

(
1 +

φ2

2

)
. (3.6)

On defining the dimensionless time-mean flow as

� = Q̄

2πca2

we rewrite equation (3.6) as

� = F +
1

2

(
1 +

φ2

2

)
. (3.7)

4. Perturbation solution

We look for a regular perturbation in terms of small parameter α as follows

w = w0 + αw1 + O(α2) (4.1a)

u = u0 + αu1 + O(α2) (4.1b)

dP

dz
= dP0

dz
+ α

dP1

dz
+ O(α2) (4.1c)

F = F0 + αF1 + O(α2). (4.1d )
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Substituting from equations (4.1a)–(4.1c) in equations (2.9), (2.13), (2.14) and (3.4) we find:
the system of order zero

1

r

∂(ru0)

∂r
+

∂w0

∂z
= 0 (4.2)

∂P 0

∂r
= 0 (4.3)

∂P0

∂z
= 1

r

∂

∂r

(
r
∂w0

∂r

)
− M2w0 (4.5)

with the dimensionless boundary conditions

∂w0

∂r
= 0 u0 = 0 at r = 0 (4.6a)

w0 = −1 u0 = −dh

dz
at r = h = 1 + φ sin 2πz (4.6b)

and the system of order one

1

r

∂(ru1)

∂r
+

∂w1

∂z
= 0 (4.7)

∂P 1

∂r
= 0 (4.8)

∂P1

∂z
= 1

r

∂

∂r

(
−r2 ∂w0

∂r
+ r

∂w1

∂r

)
− M2w1 (4.9)

with the dimensionless boundary conditions

∂w1

∂r
= 0 u1 = 0 at r = 0 (4.10a)

w1 = 0 u1 = 0 at r = h = 1 + φ sin 2πz. (4.10b)

4.1. Solution of order zero

Solving equation (4.5) using equations (4.4) and (4.6) yields

w0 = dP0/dz − M2

M2I0(Mh)
[I0(Mr) − I0(Mh)] − 1. (4.11)

The volume flow rate F0 in the moving coordinate system is given by

F0 =
∫ h

0
rw0 dr. (4.12)

Substituting from equation (4.11) into equation (4.12) and solving the result for dP0
dz

yields

dP0

dz
= M4I0(Mh)(2F0 + h2)

2MhI1(Mh) − M2h2I0(Mh)
+ M2. (4.13)
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4.2. Solution of order one

Substituting from equation (4.11) into equation (4.9) yields

r2 ∂2w1

∂r2
+ r

∂w1

∂r
− M2r2w1 = dP1

dz
r2 + g(z)[M2r3I0(Mr) + Mr2I1(Mr)] (4.14)

where

g(z) = dP0/dz − M2

M2I0(Mh)
. (4.15)

Differentiating equation (4.14) with respect to r yields

r2 ∂2S

∂r2
+ r

∂S

∂r
− (M2r2 + 1)S = g(z)[2M2r2I0(Mr) + (M3r3 − Mr)I1(Mr)] (4.16)

where

S = ∂w1

∂r
. (4.17)

The determination of a particular solution of equation (4.16) corresponding to this group of
terms is complicated, and to avoid tedious manipulation we recall a similar group of terms.
We represent the right-hand side of equation (4.16) by a polynomial in the following form

r2 ∂2S

∂r2
+ r

∂S

∂r
− (M2r2 + 1)S = g(z)

∞∑
k=0

bk(Mr)2k+2 (4.18)

where

bk = (2k + 1)(2k + 3)

22k+1(	(k + 1))2(k + 1)
for k = 0, 1, 2, 3, . . . . (4.19)

The reason for the lower limit of the sum being zero and for the even power of r in the series is
that, when the right-hand side of equation (4.16) is expanded in a power series in (Mr) using a
series expansion of I0(Mr) and I1(Mr), we obtain only even power beginning with (Mr)2 and
then we can determine bk.

Also, equation (4.14) can be written as

r2 ∂2w1

∂r2
+ r

∂w1

∂r
− M2r2w1 = dP1

dz
r2 +

g(z)

M

∞∑
k=0

bk

2k + 1
(Mr)2k+2 (4.20)

where bk is defined through equation (4.19).
Solving equation (4.18) using equations (4.8) and (4.10) yields

w1 = dP1/dz[I0(Mr) − I0(Mh)]

M2I0(Mh)
+

dP0/dz − M2

M3I0(Mh)

∞∑
k=0

ak(Mr)2k+3

2k + 3

− [dP0/dz − M2]I0(Mr)

M3(I0(Mh))2

∞∑
k=0

ak(Mh)2k+3

2k + 3
. (4.21)

The solution is obtained in equation (2.21) for an infinite series of the right-hand side of
equation (4.20).

The volume flow rate F1 in the moving coordinate system is given by

F1 =
∫ h

0
rw1 dr. (4.22)
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Substituting from equation (4.21) into equation (4.22) and solving the result for dP1
dz

yields

dP1

dz
= 2F1M

4I0(Mh)

2MhI1(Mh) − (Mh)2I0(Mh)
+ A1

∞∑
k=0

ak(Mh)2k+3

2k + 3
+ A2

∞∑
k=0

ak(Mh)2k+5

2k + 5
(4.23)

where I0(Mr) and I1(Mr) are the modified Bessel functions of the first kind and ak, A1 andA2

are constants given by

a0 = 1

2
ak = bk + ak−1

(2k + 1)(2k + 3)
for k = 1, 2, 3, 4, . . . (4.24)

A1 = M3(2F0 + h2)

2MhI1(Mh) − (Mh)2I0(Mh)
A2 = M3I0(Mh)(2F0 + h2)

[2MhI1(Mh) − (Mh)2I0(Mh)]2
. (4.25)

Substituting from equations (4.11) and (4.21) into equation (4.1a) using the relation dP0
dz

=
dP
dz

− α dP1
dz

and neglecting terms greater than O(α), we obtain

w = (dP/dz − M2)(I0(Mr) − I0(Mh))

M2I0(Mh)
+ α2

{
dP/dz − M2

M3I0(Mh)

∞∑
k=0

ak(Mr)2k+3

2k + 3

− [dP/dz − M2]I0(Mr)

M3(I0(Mh))2

∞∑
k=0

ak(Mh)2k+3

2k + 3

}
. (4.26)

Substituting from equations (4.13) and (4.23) into equation (4.1c) using the relation F0 =
F − αF1, where F is defined through equation (3.7), and neglecting the terms greater than
O(α), we obtain

dP

dz
= M4I0(Mh)(2� − φ2/2 − 1 + h2)

2MhI1(Mh) − (Mh)2I0(Mh)
+ M2

+ α

{
B1

∞∑
k=0

ak(Mh)2k+3

2k + 3
+ B2

∞∑
k=0

ak(Mh)2k+5

2k + 5

}
(4.27)

where B1 and B2 are given by

B1 = M3(2� − φ2/2 − 1 + h2)

2MhI1(Mh) − (Mh)2I0(Mh)
B2 = M3I0(Mh)(2� − φ2/2 − 1 + h2)

[2MhI1(Mh) − (Mh)2I0(Mh)]2
. (4.28)

The pressure rise 
Pλ and friction force Fλ(on the wall) in the tube length λ in their non-
dimensional forms are given by


Pλ =
∫ 1

0

dP

dz
dz (4.29)

Fλ =
∫ 1

0
h2

(
−dP

dz

)
dz (4.30)

where dP/dz is defined through equation (4.27).

5. Numerical results and conclusions

We have used a regular perturbation series in terms of the dimensionless viscosity parameter
(α) to obtain an analytical solution to the field equations for peristaltic flow of a Newtonian
fluid in an axisymmetric tube. To study the behaviour of solutions, numerical calculations for
several values of Hartmann number (M), viscosity parameter (α) and amplitude ratio (φ) have
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Figure 2. Pressure rise versus flow rate for φ = 0.6 and α = 0.1.
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Figure 3. Pressure rise versus flow rate for α = 0.1 and M = 3.

been carried out using a digital computer. Also, the infinity in equation (4.27) is approximated
to 9 since the variation in pressure gradient dP/dz is negligible at k > 9 for all values of the
parameters of interest and all values of z. The relation between pressure rise and flow rate
given by equation (4.29) is plotted in figures 2–4. The relation between friction force and flow
rate given by equation (4.30) is plotted in figures 5–7. From a physiological point of view,
there is no difference in peristaltic mechanism between the ureter and small intestine, as given
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Figure 4. Pressure rise versus flow rate for φ = 0.6. and M = 3.
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Figure 5. Friction force versus flow rate for φ = 0.6 and α = 0.1.

by Shukla et al (1980). The values of various parameters for physiological fluids in the small
intestine, as reported in Shukla et al (1980) and Srivastava et al (1983), are

a = 1.25 cm c = 2 cm min−1 λ = 8.01 cm.

It may be noted that the theory of long wavelength and zero Reynolds number of the present
investigation remains applicable here, since the radius of the small intestine is very small
compared with the wavelength.
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Figure 6. Friction force versus flow rate for α = 0.1 and M = 3.
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Figure 7. Friction force versus flow rate for φ = 0.6. and M = 3.

Figure 2 represents the variation of dimensionless pressure rise 
Pλ with time-mean
flow rate � at {α = 0.1, φ = 0.6, M = 0, 3, 5} which shows a linear relation
between them and maximum pressure rise occurs at zero flow rate for different values of
Hartmann number. Also, pressure rise increases as flow rate decreases at {0 � � < 0.45,
M = 0}, {0 � � < 0.48, M = 3} and {0 � � < 0.50, M = 5} otherwise it increases
with increasing flow rate. Furthermore, the pressure rise increases with increasing Hartmann
number, and it is independent of Hartmann number variation at a certain value of flow rate.
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Moreover, peristaltic pumping, where � > 0 (positive pumping) and 
Pλ > 0 (adverse
pressure gradient), occurs at {0 � � < 0.45,M = 0}, {0 � � < 0.48,M = 3} and {0 � � <

0.50, M = 5} otherwise augmented pumping occurs, where � > 0 (positive pumping) and

Pλ < 0 (favourable pressure gradient).

Figure 3 represents the variation of dimensionless pressure rise 
Pλ with time-mean flow
rate � at {α = 0.1, M = 3, φ = 0 (no peristalsis), 0.2 (small occlusion), 0.6 (high occlusion)}.
It is obvious that the pressure rise increases with increasing amplitude ratio and it is maximum
at zero flow rate. Also, it is independent of flow amplitude ratio at certain values of flow rate.
Furthermore, the peristaltic pumping occurs at {0 � � < 0.23 φ = 0}, {0 � � < 0.26, φ =
0.2} and {0 � � < 0.48, φ = 0.6}, otherwise augmented pumping occurs.

Figure 4 plots the relation between pressure rise and flow rate for different values of
viscosity parameter (α) at φ = 0.6. It is clear that an increase in flow rate decreases the
pressure rise at {0 � � < 0.48} for different values of viscosity parameter, otherwise it
increases with increasing flow rate. Also, the pressure rise increases with decreasing viscosity
parameter and it is independent of viscosity parameter at a certain value of flow rate. Moreover,
the peristaltic pumping occurs at {0 � � < 0.48}, otherwise augmented pumping occurs.

In order to illustrate the effect of viscosity parameter and magnetic field on the friction
force on the wall of the tube, figures 5–7 are sectored so that the upper region I denotes the
region where the reflux phenomenon occurs, where Fλ is positive. Region II, where Fλ is
negative, is designated as where peristaltic pumping occurs. In general, figures 2–7 show that
the friction force has an opposite character in compression to the pressure rise.

The physical meaning of above discussion is considered as follows. Since the magnetic
field stimulates the motor activity of the smooth muscles of the small intestine, then there is
a contraction proximal to the bolus and relaxation distal. The contraction proximal causes
a decrease in the radius of the small intestine and hence the amplitude ratio (φ) increases.
In the same way, the relaxation distal causes an increase in the radius of the small intestine
and decrease of the amplitude ratio. Thus, we conclude that the pressure rise increases at
contraction proximal and decreases at relaxation distal. This agrees with our findings; namely,
the pressure rise increases with increasing magnetic field and amplitude ratio. On the other
hand, it decreases with decreasing magnetic field and amplitude ratio.

Comparing our results with other studies, we find that the velocity field obtained
by Agrawal and Anwaruddin (1984) is a special case of our result, which is given by
equation (4.26). Furthermore, if we put k = 0 (uniform channel) and using the transformations
given by equations (2.2) and (2.3) in the results obtained by Srivastava and Srivastava (1983)
then we obtain the same results when M = 0 in the present work. Furthermore, the results
in the present work are more general than the experimental results obtained by Shapiro et al
(1969). Moreover, comparing the results obtained through figure 3 with the results given by
Siddiqui (1994), we find that for Newtonian fluid 
Pλ< 0 at φ = 0 (no peristalsis) for all
values of flow rate, but in the present work 
Pλ > 0 at {0 � � < 0.225, φ = 0} and {0 � � <

0.255, φ = 0.2} otherwise 
Pλ< 0. Also, our results without a magnetic field coincide with
the results obtained by El Misery et al (2003) when there is no endoscope.
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